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1. Introduction

The low energy limit of M-theory, that is eleven-dimensional supergravity, forms arguably

the most natural starting point from which we hope to recover observable physics from a

fully consistent theory. The first issue to address is of course the fact that we observe four

dimensions and the most phenomenologically successful approach so far has been to single

out one of the space dimensions as independent of the other nine. Compactifying on this

dimension then leads to type IIA string theory [1 – 3] which can then be compactified to

four dimensions on a six-dimensional Calabi-Yau. The dimension may also be taken to be

an interval, and then compactifying on a Calabi-Yau leads to a Brane-world scenario [4]. If

we do not require the existence of such a special trivially fibred direction we should consider

compactifying on seven dimensional manifolds. The possible contenders for such manifolds

are required by supersymmetry to have special holonomy and until recently the main body

of work has concentrated on manifolds with G2-holonomy that lead to Minkowski space in

four dimensions and preserve N = 1 supersymmetry [5]. These compactifications lead to

massless scalar fields in four dimensions that are known as moduli and an important first

phenomenological step is to lift these flat directions. In string theory flux compactifica-

tions have proved very successful in achieving this (for a review see [6]) and in M-theory

there has been some success in the case of G2-manifolds [7 – 9]. A feature of flux com-

pactifications is that flux on the internal manifold will back-react on the geometry and in

general induce torsion and warping on the manifold deforming its special holonomy to the

more general property of a G structure [10, 11]. To take this back-reaction into account

we should therefore consider compactifications on manifolds with a particular G structure.

Compactifications that derive the four dimensional theory have been done for the case of

manifolds with G2 structure [9, 12 – 14]. Eleven dimensional solutions that explore the

structure of the vacuum have been studied for the cases of SU(2), SU(3) and G2 structure

in [15 – 22]. An interesting point to come out of these studies is that compactifications on

manifolds with SU(3) structure have a much richer vacuum spectrum than manifolds with

G2 structure. Indeed there are solutions that preserve only N = 1 supersymmetry in the

vacuum putting them on an equal phenomenological grounding with G2 compactifications

in that respect. There are however many phenomenologically appealing features that are

not present in the G2 compactifications such as warped anti-deSitter solutions and solutions

with non-vanishing internal flux.

In this paper we will study compactifications on manifolds with SU(3) structure. We

will see that because the SU(3) structure naturally picks out a vector on the internal

manifold these compactifications can be cast into a form that is similar to type IIA com-

pactifications on SU(3) structure manifolds [23]. However unlike in (massless) type IIA,

we will show that, under certain assumptions regarding the expansion basis discussed in

section 3.2.1, it is possible to find purely perturbative vacua with all the moduli stabilised

that preserve either N = 2 or N = 1 supersymmetry [24 – 26]. Moreover, as also remarked

in [27], such compactifications offer the possibility to obtain charged scalar fields which

reside in the N = 2 vector multiplets rather than in the hypermultiplets as realised so far

in most cases (see for example [6]).

– 2 –
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We will begin this paper with a discussion of the notion of G structures and the idea

of mass hierarchies between various G structures. In section 3 we will perform a reduction

of eleven-dimensional supergravity on a general manifold with SU(3) structure deriving

the kinetic terms for the four-dimensional scalar fields and the four-dimensional gravitini

mass matrix. The mass matrix will then be used to explore the amount of supersymmetry

preserved by various manifolds. We will begin by looking at vacua that preserve N = 2

supersymmetry in section 4. We will first derive the most general N = 2 solution and

use it as a check on the mass matrix. We will then show how this solution can be used

to find explicit vacua of an example manifold. In section 5 we will move on to the more

phenomenologically interesting N = 1 vacua and will show that some manifolds will induce

spontaneous partial supersymmetry breaking that will lead to an N = 1 effective theory.

We will derive this theory and go through an explicit example of moduli stabilisation. This

will also serve as an interesting example of a mass gap between G structures. Finally,

in the Appendices, we present our conventions and some technical details related to the

calculations we perform in the main text.

Note added: while this manuscript was prepared for publication another paper ap-

peared, [57], which has some overlap with the issues discussed in this paper. Further to

this we were informed of work in progress which also relates to the discussed issues [58].

2. G structures

In this section we briefly discuss the notion of a G structure and the two particular cases

of G2- and SU(3) structure in seven-dimensions. For a more thorough introduction to G

structures we refer the reader to [10, 11]. A manifold is said to have G structure if the

structure group of the frame bundle reduces to the group G. In practice this translates

into the existence of a set of G-invariant forms and spinors on such manifolds.

In general these forms are not covariantly constant with respect to the Levi-Civita

connection, which would imply that the holonomy group of the manifold is reduced to

G. The failure of the Levi-Civita connection to have reduced holonomy G is measured by

the intrinsic torsion. In turn, the intrinsic torsion, and in particular its decomposition in

G-representations, is used to classify such manifolds with G structure. In the following

we will give a couple of examples of G structures defined on seven-dimensional manifolds

which we will use in this paper.

2.1 G2 structure in seven dimensions

A seven-dimensional manifold with G2 structure has a globally defined G2-invariant, real

and nowhere-vanishing three-form ϕ which can be defined by a map to an explicit form

in an orthonormal basis [28]. Alternatively, manifolds with G2 structure feature a glob-

ally defined, G2-invariant, Majorana spinor ε. Note that we shall work in a basis where

Majorana spinors are real. In terms of this spinor the G2 form, ϕ is defined as

ϕmnp = iεT γmnpε , (2.1)

with the spinor normalisation εT ε = 1.

– 3 –
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Using the G2 structure form ϕ we can write

dϕ = W1 ? ϕ − ϕ ∧ W2 + W3 ,

d (?ϕ) =
4

3
? ϕ ∧ W2 + W4 ,

(2.2)

where W1, . . . ,W4 are the four torsion classes. In terms of G2 representations W1 is a

singlet, W2 a vector, W3 a 27 while W4 transforms under the adjoint representation, 14.

For further reference we note here that manifolds with only W1 6= 0 are called weak-G2

manifolds and they are the most general solutions of the Freund-Rubin Ansatz [29, 30].

2.2 SU(3) structure in seven dimensions

Manifolds with SU(3) structure are more familiar in the context of six dimensions. In

particular, the most important representatives are the Calabi–Yau manifolds for which the

intrinsic torsion vanishes identically (ie, as explained before they have SU(3) holonomy).

One the other hand, seven-dimensional manifolds with SU(3) structure were less studied

partly due to the fact that for the case of no torsion where the holonomy group of the

manifold is SU(3) the seven-dimensional manifold is just a direct product of a Calabi–

Yau manifold and a circle. Therefore studying M-theory on such manifolds is equivalent

to studying type IIA string theory on a Calabi-Yau. Once some torsion classes are non-

vanishing a non-trivial fibration is generated thereby making such studies different to type

IIA compactifications.

An SU(3) structure on a seven dimensional manifold implies the existence of two

globally defined, nowhere-vanishing Majorana spinors ε1 and ε2 which are independent in

that they satisfy εT
1 ε2 = 0. In the following we will find it more convenient to use two

complex spinors ξ±

ξ± =
1√
2

(
ε1 ± iε2

)
. (2.3)

Similar to the case presented in the previous subsection, we construct the SU(3) invariant

forms Ω, J , V

Ωmnp = −ξ†+γmnpξ− ,

Jmn = iξ†+γmnξ+ = −iξ†−γmnξ− , (2.4)

Vm = −ξ†+γmξ+ = ξ†−γmξ− .

Note that in comparison to six-dimensional SU(3) structures, in seven dimensions there

also exists a globally defined vector field V . It is important to bear in mind that in general

this vector is not a Killing direction and thus the manifold does not have the form of a

direct product.

One can now show that Ω, J and V are all the possible independent combinations

which one can construct and any other non-vanishing quantities can be expressed in terms

of them. For example we have

ξ†−γmnpξ+ = Ω̄mnp ,

– 4 –
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ξ†+γmnpξ+ = ξ†−γmnpξ− = i(J ∧ V )mnp . (2.5)

Furthermore, one can also show that the forms defined in (2.4) satisfy the seven-

dimensional SU(3) structure relations

J ∧ J ∧ J =
3i

4
Ω ∧ Ω̄ ,

Ω ∧ J = V yJ = V yΩ = 0 ,
(2.6)

where the contraction symbol y is defined in equation (A.4). Finally one can prove the

following useful relations

V yV = 1 ,

Jm
iJ

i
n = −δm

n + V mVn ,

J i
m Ω±inp = ∓Ω∓mnp , (2.7)

?Ω± = ±Ω∓ ∧ V ,

? (J ∧ V ) =
1

2
J ∧ J ,

where we have split the complex three-form Ω in to its real and imaginary parts

Ω = Ω+ + iΩ− . (2.8)

Let us now see how to decompose the intrinsic torsion in SU(3) modules. As before

they are most easily defined from the differentials of the forms Ω, J and V . Generically

we have [16, 22]

dV = RJ + W̄1yΩ + W1yΩ̄ + A1 + V ∧ V1 , (2.9)

dJ =
2i

3

(
c1Ω − c̄1Ω̄

)
+ J ∧ V2 + S1 + V ∧

[
1

3
(c2 + c̄2) J + W̄2yΩ + W2yΩ̄ + A2

]
, (2.10)

dΩ = c1J ∧ J + J ∧ T + Ω ∧ V3 + V ∧ [c2Ω − 2J ∧ W2 + S2] , (2.11)

where the representatives of the 15 torsion classes are denoted by R, c1,2, V1,2,3, W1,2, A1,2,

T and S1,2. It is easy to read off the interpretation of the above torsion classes in terms

of the SU(3) structure group. There are three singlet classes R (real) and c1,2 (complex),

five vectors V1,2,3 (real) and W1,2 (complex), three 2-forms A1,2 (real) and T (complex) and

two 3-forms S1,2.

Before concluding this section we should make more precise the relation between the

SU(3) and G2 structures on a seven dimensional manifold. Obviously, as SU(3) ⊂ G2, an

SU(3) structure automatically defines a G2 structure on the manifold. In fact, an SU(3)

structure on a seven-dimensional manifold implies the existence of two independent G2

structures whose intersection is precisely the SU(3) structure. Concretely, using the spinor

ε1 and ε2 defined above we can construct the two G2 forms ϕ±

(
ϕ+

)
mnp

≡ 2iε1γmnpε1 ,
(
ϕ−

)
mnp

≡ 2iε2γmnpε2 .
(2.12)
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The relation to the SU(3) structure is now given by

ϕ± = ±Ω− − J ∧ V . (2.13)

Throughout this paper it will sometimes be useful to use the SU(3) forms and sometimes

the G2 forms but we should keep in mind that the two formulations are equivalent.

2.3 Mass hierarchies

When the torsion on the internal manifold and the fluxes vanish, the holonomy group

directly determines the amount of supersymmetry preserved in the vacuum. This is not

the case with non-trivial G structures and/or fluxes where the amount of supersymmetry in

the vacuum is not uniquely determined by the structure/holonomy group of the manifold.

It should nevertheless be kept in mind that the amount of supersymmetry of the effective

action is not unrelated to the structure group. In particular, the existence of globally

defined spinors on the internal manifold allows us to define four-dimensional supercharges

and therefore constitute a sufficient condition for supersymmetry of the effective action.

Even though in general the situation can be more complicated we will assume that such

supercharges, which are related to the globally defined spinors, are the only ones which

survive in four dimensions and so the amount of supersymmetry of the effective action is

given directly in terms of the structure group of the internal manifold.1 Consequently, we

will consider that M-theory compactifications on seven-dimensional manifolds with SU(3)

structure lead to an N = 2 supergravity theory in four dimensions2 while the vacuum may

preserve N = 2 or N = 1 supersymmetry or even break it completely depending on which

torsion classes (and fluxes) are turned on. This may be understood from the fact that

when there are more than one internal spinors on the manifold they may satisfy different

differential relations according to what torsion classes are present and so may correspond to

different eigenvalues of the Dirac operator. Consider decomposing the eleven-dimensional

gravitino in terms of the globally defined spinors on the internal manifold. Than the

four-dimensional gravitini may have varying masses and there will appear mass hierarchies

throughout the four-dimensional low-energy field spectrum. If the mass scales are well

separated we can consider that only the lowest mass states are excited and so it is clear

that in such a vacuum only a fraction of the original amount of supersymmetry is preserved.

We will present such an example in section 5.4.2 where it will become clear that one of

the two gravitini will become massive in the vacuum and thus supersymmetry will be

spontaneously broken from N = 2 to N = 1.

1We thank Nikolaos Prezas for pointing this out. For a recent discussion of this we refer the reader

to [31].
2Strictly speaking, as manifolds with G2 structure are known to have in fact SU(2) structure [32], the

effective action in four dimensions would be that of an N = 4 supergravity. However, as SU(2) structures in

seven-dimensions are much less tractable than SU(3) ones, we shall consider that the additional spinors lead

to massive particles and we shall ignore them right from the beginning. In fact we shall see in sections 4

and 5 that for some seven-dimensional coset manifolds the SU(2) structure is not compatible with the

symmetries of the coset. As the lower mass states are associated with modes on the coset which obey the

coset symmetries it is clear that such cases create a hierarchy between the four globally defined spinors

effectively leading to a manifold with less globally defined spinors.
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3. The reduction

The theory we will be considering is the low energy limit of M-theory that is eleven-

dimensional supergravity. The bosonic action of the theory as well as the relevant gravitino

terms are given by [33]

S11 =
1

κ2
11

∫ √−g11d
11X

[
1

2
R̂11 −

1

2
Ψ̄M Γ̂MNP D̂NΨP − 1

4

1

4!
F̂MNPQF̂MNPQ (3.1)

+
1

2

1

(12)4
εLMNPQRSTUV W F̂LMNP F̂QRST ĈUV W

− 3

4(12)2
(Ψ̄M Γ̂MNPQRSΨN + 12Ψ̄P Γ̂QRΨS)FPQRS

]
.

The field spectrum of the theory contains the eleven-dimensional graviton ĝMN , the three-

form ĈMNP and the gravitino, Ψ̂P . The indices run over eleven dimensions M,N, .. =

0, 1, . . . , 10. For gamma matrix and epsilon tensor conventions see the Appendix. κ11

denotes the eleven-dimensional Planck constant which we shall set to unity henceforth

thereby fixing our units.

In this section we will consider this theory on a space which is a direct product M11 =

M4 × K7 with the metric Ansatz

ds2
11 = gµν(x)dxµdxν + gmn(x, y)dymdyn, (3.2)

where x denotes co-ordinates in four-dimensions and y are the co-ordinates on the internal

compact manifold. The first thing to note is that this Ansatz is not the most general Ansatz

possible for a metric as we have not included as possible dependence of the four-dimensional

metric on the internal co-ordinates that is usually referred to as a warp factor. There are

many compactifications that can consistently neglect such a warp factor because either a

warp factor is not induced by the flux or it can be perturbatively ignored if the internal

volume is large enough. Including such a warp factor is a difficult proposition for an action

compactification because it can, and generally will, be a function of the four-dimensional

moduli 3. For now we will proceed with an unwarped Ansatz bearing in mind that this is

only consistent for certain compactifications.

The four-dimensional effective theory will be an N = 2 gauged supergravity. These

type of theories have been studied extensively in the literature, see [34 – 39] and references

within, and this work will be useful as a guide for the compactification. In the upcoming

sections we will derive most of the quantities necessary to specify this theory. The kinetic

terms for the low energy fields will be derived from the Ricci scalar and the kinetic term for

the three-form. The prepotentials can then be derived from the four-dimensional gravitini

mass matrix.

3This is not a problem when looking for solutions as they only probe the vacuum and are insensitive to

moduli dynamics.
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3.1 The Ricci scalar

As is well known, the metric on the compactification manifold is not rigid and its fluctua-

tions can be written in terms of scalar fields in the effective low-energy theory. Important

constraints on the spectrum and kinetic terms for these scalar fields come from the fact

that they should form a four-dimensional N = 2 supergravity. Compactifications of type

II supergravities from ten to four dimensions on Calabi-Yaus naturally lead to such a su-

pergravity. In this section we will show that it is possible to keep an analogy with these

compactifications for the case of M-theory on SU(3) structure manifolds that we are con-

sidering. A similar approach was adopted in [23] and we will closely follow their results.

3.1.1 The induced metric variations

Having SU(3) structure on a manifold is a stronger condition than having a metric. Infact

the SU(3) structure induces a metric on the manifold that we can write in terms of the

invariant forms as

gab ≡ |s|− 1

9 sab

sab ≡
1

16

[
1

4

(
ΩamnΩ̄bpq + Ω̄amnΩbpq

)
+

1

3
VaVbJmnJpq

]
JrsVt ε̂mnpqrst .

(3.3)

This expression for the metric can be checked by performing the contractions on the right-

hand-side using the appropriate SU(3) structure identities. Clearly, as the metric is deter-

mined uniquely in terms of the structure forms, all the metric fluctuations can be treated

as fluctuations of the structure forms. The converse however is not true as it is possible

that different structure forms give rise to the same or equivalent metrics. Therefore, when

expressing the metric variations in terms of changes in the structure forms one has to take

care not to include the spurious variations as well.

Varying the formula above we can write the metric deformations as

δgab =
1

8
δΩ mn

(a Ω̄b)mn +
1

8
Ω mn

(a δΩ̄b)mn + 2V(aδVb) + VaVb (JyδJ) + J m
(a δJb)m

+V mV(aJ
n
b)δJmn − 1

3

(
1

4
δΩyΩ̄ +

1

4
ΩyδΩ̄ + JyδJ

)
gab . (3.4)

Note that this is very similar to normal Calabi–Yau compactifications where the metric

variations were expressed in terms of Kähler class and complex structure deformations.

Keeping the terminology we will refer to the scalar fields associated with δJ and δΩ as

Kähler moduli and complex structure moduli respectively. Furthermore we will denote the

scalar associated to δV as the dilaton in complete analogy to the type IIA compactifications.

Before starting the derivation of the kinetic terms associated to the metric deformations

discussed above we mention that the metric variations can be dealt with more easily in

terms of the variations of either of the two G2 structures which can be defined on seven-

dimensional manifolds with SU(3) structure (2.13)

δgab =
1

2
ϕ±

(a

mn
δϕ±

b)mn − 1

3

(
ϕ±

yδϕ±
)
gab. (3.5)

Therefore, for each of the G2 structures the formula coincides with the metric variations

on a manifold with G2 structure [12].

– 8 –
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3.1.2 The Ricci scalar reduction

Let us now see explicitely how to derive the kinetic terms for the moduli fields described

above. As they are metric moduli, their kinetic terms should appear from the compact-

ification of the eleven-dimensional Ricci scalar. The explicit calculation is presented in

Appendix B and here we will only outline the main steps before stating the final result.

We should also mention that during this process we are mainly interested in the fate of

the scalar fields which appear as fluctuations of the metric on the internal manifold and

therefore we shall not discuss the vector field (graviphoton), which also arises from the

metric, as we expect that its kinetic term is the standard one.

For now we do not decompose Ω and J into their four-dimensional scalar components

but with the vector V we write

V (x, y) ≡ eφ̂(x)z(y), (3.6)

where z is the single vector we have on the internal manifold from the SU(3) structure

requirements. Note that it is still V and not z that features in the SU(3) relations (2.6).

The difference between V and z can be understood as V is the SU(3) vector which also

encodes the possible deformations of the manifold, while z is only a basis vector in which we

expand V . Therefore, the factor eφ̂ encodes information about the deformations associated

to the vector V . This is completely analogous to the compactification of eleven-dimensional

supergravity on a circle to type IIA theory and in order to continue this analogy we shall

call the modulus in equation (3.6) the dilaton. Let us further define a quantity which in the

case where the compactification manifold becomes a direct product of a six-dimensional

manifold (with SU(3) structure) and a circle, plays the role of the volume of the six-

dimensional space

V6 ≡ e−φ̂V , (3.7)

where V is the volume of the full seven-dimensional space

V ≡
∫ √

g7 =
1

6

∫
J ∧ J ∧ J ∧ V . (3.8)

To see the use of this quantity, note that due to the first relation in (2.6), a scaling of the

three-form Ω automatically induces a change in the volume. Thus, scalings of Ω would

have the same effect as appropriate scalings of J and in order not to count the same degree

of freedom twice we shall define

e
1

2
KcsΩcs ≡ 1√

8
Ω(V6)

− 1

2 , (3.9)

where we have also introduced the Kähler potential for the complex structure deformations,

Kcs, extending the results of [23, 40, 41]

Kcs ≡ −ln (||Ωcs||V6) = −lni < Ωcs|Ω̄cs >≡
∫

Ωcs ∧ Ω̄cs ∧ z . (3.10)

It is easy to check that rescalings of Ω precisely cancel the corresponding variation of V6 on

the RHS of equation (3.9) and hence Ωcs defined on the LHS stays unchanged. In this way

we have managed to decouple the volume modulus from the form Ω. The relation (3.9)

– 9 –
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deserves one more explanation. The additional factor on the LHS, exp 1
2Kcs has been intro-

duced in order to describe by Ωcs the exact analogue of the Calabi–Yau holomorphic 3-form

whose norm precisely gives the Kähler potential of the complex structure deformations.

One more comment is in order here. As explained before, not all the variations of

the structure forms induce valid metric deformations. In particular the definition of the

3-form Ω (2.4) allows for an arbitrary phase which would subsequently drop out from the

metric variations (3.4). In order to make sure that such variations are not introduced as

degree of freedom we should “gauge” these phase transformation for Ω. Given the Kähler

potential (3.10) and the definition (3.9) it is not hard to see that Kähler transformations,

which correspond to scalings of Ωcs by some function which is holomorphic in the complex

structure moduli, precisely correspond to phase variations of Ω. Therefore, the covariant

derivative for the “gauged” phase transformations of Ω should precisely be the Kähler

covariant derivative

DµΩ ≡ ∂µΩ +
1

2
∂µKcsΩ =

√
8V6e

1

2
Kcs(∂µΩcs + ∂µKcsΩ

cs) ≡
√

8V6e
1

2
KcsDµΩcs . (3.11)

Finally we note that we have to take into account the usual Weyl rescalings in order

to arrive to the four-dimensional Einstein frame

gµν → V−1gµν ,

gmn → e−
2

3
φ̂gmn .

(3.12)

Following the above steps one can derive the (linearised) variation of the Ricci scalar

under the metric fluctuation (3.4). The calculation is presented in the appendix and here

we recall the final result

∫ √−g11d
11X

1

2
R11 =

∫ √−g4d
4x

[1

2
R4 − ∂µφ∂µφ +

1

2
e2φV−1

∫ √
g7R7

− 1

8
e−φ̂eKcs

∫ √
g7 d7y DµΩcs

yDµΩ̄cs

− 1

4
V−1

6 e−φ̂

∫ √
g7 d7y ∂µJy∂µJ

]
, (3.13)

where we have also defined the four-dimensional dilaton

φ ≡ φ̂ − 1

2
lnV6 . (3.14)

The important thing to notice on this result is that the metric fluctuations have naturally

split into the dilaton, the J and Ωcs variations with separate kinetic terms. Moreover, due

to the dependence of
√

g7 on the dilaton, it can be seen that the all the dilaton factors

drop out from the kinetic terms of the Kähler and complex structure moduli. Therefore,

this result is very much like the one for usual type IIA compactifications on Calabi–Yau

manifolds with the notable difference that a potential for the moduli appears due to the

fact that manifolds with SU(3) structure are in general no longer Ricci flat.
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3.2 Four-dimensional field content and kinetic terms

In this section we will complete the kinetic terms for the low energy scalar field spectrum

by reducing the three-form field Ĉ3. These scalar fields pair up with the geometrical moduli

into N = 2 multiplets. We will however ignore the presence of additional fields, like gauge

fields, which are expected to have similar kinetic terms to the gauge fields coming from

type IIA compactifications.

3.2.1 Reduction of the three-form

As we have seen in the previous subsection, the compactification of the gravitational sector

of M-theory on seven-dimensional manifolds with SU(3) structure resembles very much the

corresponding compactifications of type IIA theory on Calabi–Yau manifolds. Therefore

we will find it useful to continue this analogy at the level of the matter fields and so

we will first decompose the 3-form Ĉ3 along the vector direction which is featured in the

seven-dimensional manifolds with SU(3) structure under consideration. Consequently we

write

Ĉ3 = C3 + B2 ∧ z , (3.15)

where C3 is assumed to have no component along z, ie C3yz = 0. As expected, in the type

IIA picture C3 will correspond to the RR 3-form, while B2 represents the NS-NS 2-form

field. Then compactifying the eleven-dimensional kinetic term, taking care to perform the

appropriate Weyl rescalings (3.12), we arrive at

∫ √−g11d
11X

[
−1

4
F̂yF̂

]
(3.16)

=

∫ √−g4d
4x

[
−1

4
e2φe−φ̂

∫ √
g7d

7y∂µC3y∂
µC3 −

1

4
V−1

6 e−φ̂

∫ √
g7d

7y∂µB2y∂
µB2

]
.

One immediately notices that the kinetic term for fluctuations of the B2-field along the

internal manifold is the same as the kinetic term for the fluctuations of the fundamental

form J . Therefore we see that these fluctuations pair up into the complex field

T ≡ B2 − iJ . (3.17)

In order to analyse the four-dimensional effective action we have to specify which are

the modes we want to preserve in a Kaluza-Klein truncation. In general one restricts to

the lowest mass modes, but in the case at hand this is a hard task partly due to the

big uncertainties regarding the spectrum of the Laplace operator on forms for arbitrary

manifolds with SU(3) structure. The best thing we can do is to use our knowledge from

other similar cases where the structure of four-dimensional theory was derived [23, 40,

42 – 44], as well as the close analogy to the type IIA compactifications and postulate the

existence of a set of forms in which to expand the fluctuations we have discussed so far.

For the moment these forms are quite arbitrary, but for specific cases it should be possible

to derive some of their most important properties. In fact we shall see such examples

in sections 4 and 5 where explicit examples of manifolds with SU(3) structure will be

discussed. Therefore we consider a set of two-forms, ωi, with dual four-forms, ω̃i which
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satisfy ∫
ωi ∧ ω̃j ∧ z = δj

i . (3.18)

Furthermore we introduce three-forms (αA, βA) which obey

∫
αA ∧ βB ∧ z = δB

A ,
∫

αA ∧ αB ∧ z =

∫
βA ∧ βB ∧ z = 0 .

(3.19)

Anticipating that we expand the structure variations in these forms we also consider them

to be compatible with the SU(3) structure relations (2.6) and (2.7)

ωi ∧ αA = ωi ∧ βA = 0 ,

zyωi = zyαA = zyβA = 0 .
(3.20)

These forms can in general depend on all seven internal coordinates and not be closed.

The index ranges are not necessarily topological but should correspond to the number of

generalised calibrated submanifolds in the internal manifold [40, 42 – 44].

Given the forms defined above we should expand all the fluctuations and interpret

the coefficients as the four-dimensional degrees of freedom. Consequently we write for the

metric variations
J(x, y) = vi(x)ωi(y) ,

Ωcs(x, y) = ZA(x)αA(y) − FA

(
Z(x)

)
βA(y) ,

(3.21)

where we have already used the fact that the deformations of Ω span a special-Kähler

manifold and therefore can be written as above, where FA is a holomorphic function of the

complex coordinates ZA, which is also homogeneous of degree one in ZA. From the four-

dimensional perspective vi are real scalar fields which we will refer to as Kähler moduli.

ZA on the other hand are not all independent and we shall consider as the true degrees of

freedom the quantities za = Za/Z0, where the index a runs over the same values as the

index A, except for the value 0. For the matter fields we take

B2(x, y) = B̊2(y) + B̃2(x) + bi(x)ωi(y) ,

C3(x, y) = C̊3(y) + C̃3(x) + Ai(x) ∧ ωi(y) + ξA(x)αA(y) − ξ̃A(x)βA(y) .
(3.22)

Note that in the above decomposition we have allowed for a background value for B2 and

C3 which we denoted B̊2 and C̊3 respectively. These values should be understood as giving

rise to the flux terms for the field strengths of B2 and C3 and therefore they should not

be globally well defined over the internal manifold. We will postpone their discussion until

the next section when we deal with background fluxes. Note that B2 can not be expanded

along the z direction as it already comes from a three-form with one leg along z, while C3

was assumed not to have any component along z cf equation (3.15). The fields bi, ξA and ξ̃A

are scalar fields in four dimensions and they will be important for our following discussion.

Moreover, B̃2(x) is a four-dimensional two-form which, in the absence of fluxes, can be

dualised into an axion b(x). Here however we will not perform this dualization as in the
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gµν , A0 gravitational multiplet

ξ0, ξ̃0, φ, B̃2 universal tensor-multiplet

bi, vi, Ai vector multiplets

ξa, ξ̃a, z
a hypermultiplets

Table 1: Table showing the N = 2 multiplets.

examples we present in sections 4.2 and 5.4 the B̃-field will be massive in four dimensions

and therefore we will keep it as a member of “the universal” tensor-multiplet. C̃3(x) is a

three-form which carries no degree of freedom in four dimensions and is dual only to some

constant, but its dualisation in four dimensions requires more care. As explained before,

we shall not deal with the vector fields Ai here as their couplings are expected to be similar

to the type IIA compactifications. Also we shall neglect other vector degrees of freedom

which arise from the isometries of the internal manifold and leave their proper treatment

for another project.

We will also find it useful to introduce at this level one more notation. As we are

mostly interested in the scalar fields in the theory we will denote all the fluctuations of Ĉ3

which give rise to scalar fields in four dimensions by ĉ3. Just from its definition we can

see that this is a three-form on the internal manifold. In terms of the expansions above it

takes the form

ĉ3(x, y) = bi(x)(ωi ∧ z)(y) + ξA(x)αA(y) − ξ̃A(x)βA(y) . (3.23)

Finally, as we expect that the low energy effective action is a N = 2 (gauged) super-

gravity, the light fields should assemble into N = 2 multiplets. This is briefly reviewed in

table 1. As mentioned before, the internal parts of the two form B, and the fundamental

form J combine themselves into a complex field

T (x, y) ≡ B2(x, y) − iJ(x, y) = ti(x)ωi(y) ≡ (bi(x) − ivi(x))ωi(y) , (3.24)

which will become the scalar components of the N = 2 vector multiplets. The associated

Kähler potential is again similar to the one in type IIA theory

Kt = − ln
1

6

∫
J ∧ J ∧ J ∧ z = −lnV6 . (3.25)

As we expect from the structure of N = 2 supergravity theories as well as from the analogy

to type IIA compactifications [23, 40], the fields ti span a special Kähler geometry with a

cubic prepotential F = −1
6

Kijktitjtk

t0
, where Kijk are the analogue of the triple intersection

numbers

Kijk =

∫
ωi ∧ ωj ∧ ωk ∧ z . (3.26)

The symplectic sections are given by XI = (t0, ti) and FI = ∂IF with t0 = 1. Indeed, one

can easily check, using the expansion (3.21) that the Kähler potential above derives from

the general N = 2 formula K = − ln i
(
XIF̄I − X̄IFI

)
.
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It is interesting to note that while in type IIA compactifications with fluxes only

charged hypermultiplets can appear, in the case of M-theory compactified on seven-dimen-

sional manifolds with SU(3) structure one can also obtain charged vector multiplets as also

remarked in [27]. Indeed it is not hard to see that provided
∫

dωiy(ωj ∧ z) ≡ kij does not

vanish, the kinetic term for the three-form Ĉ3 in eleven dimensions generates a coupling of

the type kijb
iAj in the low energy effective action which precisely uncovers the fact that

the scalars in the vector multiplets become charged.

3.3 Flux and gravitino mass matrix

So far we have only discussed the kinetic terms of the various fields which appear in the

low energy theory and we have seen that their structure is very much like in type IIA

compactifications. We will now turn to study the effect of the non-trivial structure group

and of turning on fluxes. The only background fluxes which can be turned on in M-theory

compactifications and which are compatible with four-dimensional Lorenz invariance can

be written as [
F̂4

]
Background

= fη4 + G . (3.27)

Here f is known as Freud-Rubin parameter where η4 is the four-dimensional volume form

and G is the four-form background flux which can locally be written as

G = dC̊3(y) , (3.28)

where C̊3(y) is the background part of the three-form field Ĉ3 which was defined in equation

(3.22). As observed in the literature [9, 12, 45], the Freund-Rubin flux is not the true

constant parameter describing this degree of freedom. Rather one has to consider the flux

of the dual seven-form field strength F̂7

F̂7 = dĈ6 +
1

2
Ĉ3 ∧ F̂4 , (3.29)

which should now be the true dual of the Freund-Rubin flux. As can be seen the F̂7 flux also

receives a contribution from the ordinary F̂4 flux. Therefore, in general, the Freund-Rubin

flux parameter is given by

f =
1

V

(
λ +

1

2

∫
ĉ3 ∧ G +

1

2

∫
ĉ3 ∧ dĉ3

)
, (3.30)

where λ is a constant which parameterizes the 7-form flux.

On top of these fluxes which can be turned on for the matter fields one has to consider

the torsion of the internal manifold with SU(3) structure which is also known as “metric

flux”. The effects of the torsion can be summarised as follows. We have already seen that

the compactification of the Ricci scalar contains a piece due to the non-vanishing scalar

curvature of the internal manifold. This is entirely due to the torsion as manifolds with

SU(3) holonomy are known to be Ricci flat. Moreover, a non-trivial torsion is associated

with non-vanishing exterior derivatives of the structure forms. If we insist that we expand

the fluctuations of these structure forms as in equation (3.21) it is clear that the expansion
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forms cannot be closed. Therefore, the presence of torsion forces us to perform the field

expansions in forms which are no longer closed. Such forms will induce in the field strength

of the three-form Ĉ3 terms which are purely internal and which are – from this point of

view — indistinguishable from the normal fluxes and so the flux in (3.27) is modified to be

the full field strength expression

yF̂4 = fη4 + G + dĉ3 , (3.31)

where the derivative should be understood as the exterior derivative on the seven-dimen-

sional manifold. However such “induced” fluxes are not constant, but they depend on the

scalar fields which arise from Ĉ3. It is also worth noting at this point that provided these

scalar fields are fixed at a non-vanishing value in the vacuum, these vacuum expectation

values will essentially look like fluxes for F̂4 in that specific vacuum. We will use this fact

later on when we discuss moduli stabilization.

As mentioned before, the effect of the fluxes and torsion is to “gauge” the N = 2 super-

gravity theory and induce a potential for the scalar fields. These effects can be best studied

in the gravitino mass matrix to which we now turn. In an N = 1 supersymmetric theory,

the gravitino mass is given by the Kahler potential and superpotential, while in an N = 2

theory we have a mass matrix which is constructed out of the Killing prepotentials (electric

and magnetic) that encode information about the gaugings in the hyper-multiplet sector.

Moreover, the same gravitino mass matrix appears in the supersymmetry transformations

of the four-dimensional gravitini and therefore its value in the vacuum gives information

about the amount of supersymmetry which is preserved in that particular case. This can

also be understood from the fact that unbroken supersymmetry requires vanishing physical

masses4 for the gravitino and so, non-zero eigenvalues of the gravitino mass matrix in the

vacuum imply partial or complete spontaneous supersymmetry breaking. In the case of

partial supersymmetry breaking of an N = 2 theory, the superpotential and D-terms of

the resulting N = 1 theory are completely determined by the N = 2 mass matrix.

In a compactification from a higher-dimensional theory there are several ways to de-

termine the gravitino mass matrix in the four-dimensional theory. If we have explicit

knowledge of the four-dimensional degrees of freedom we can derive the complete bosonic

action and from the potential and gaugings derive the N = 2 Killing prepotentials. Alter-

natively one can directly perform a computation in the fermionic sector and directly derive

the gravitino mass matrix or compactify the higher dimensional supersymmetry transfor-

mations. The advantage of the last two methods is that one obtains a generic formula for

the mass matrix in terms of integrals over the internal manifold without explicit knowledge

of the four-dimensional fields. Once these fields are identified in some expansion of the

higher-dimensional fields one can obtain an explicit formula for the mass matrix which

should also be identical to the one obtained from purely bosonic computations.

In the following we choose to determine the gravitino mass matrix by directly iden-

tifying all the possible contributions to the gravitino mass from eleven dimensions. For

4In AdS space, the mass parameter which appears in the Lagrangian is not the true mass of a particle.

Therefore we use the terminology physical mass in order to distinguish the true mass from the parameter

which appears in the Lagrangian.
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this we will first have to identify the four-dimensional gravitini. Recall from section 2.2

that on a seven-dimensional manifold with SU(3) structure one can define two independent

(Majorana) spinors which we have denoted ε1,2. Then, we consider the Ansatz

Ψ̂µ = V− 1

4

(
ψ1

µ ⊗ ε1 + ψ2
µ ⊗ ε2

)
, (3.32)

where ψ1,2 are the four-dimensional gravitini which are Majorana spinors and the overall

normalisation factor is chosen in order to reach canonical kinetic terms in four-dimensions.

It is more customary to work with gravitini which are Weyl spinors in four dimensions and

therefore we decompose ψ1,2 above as

ψα
µ =

1

2

(
ψα

+µ + ψα
−µ

)
, (3.33)

where α, β = 1, 2 and the chiral components of four-dimensional gravitini satisfy

γ5ψ
α
±µ = ±ψα

±µ . (3.34)

Then compactifying the eleven-dimensional gravitino terms in (3.1) and performing the

appropriate Weyl rescalings (3.12) we arrive at the four-dimensional action

S̃ψµ
=

∫

M4

√−g
[
−ψ̄α

+µγµνρDνψ
α
+ρ + Sαβψ̄α

+µγµνψβ
−ν + c.c.

]
. (3.35)

The main steps in deriving the mass matrix are presented in appendix C and for similar

calculations we refer the reader to the existing literature [12, 23, 57] where similar calcu-

lations were performed. Equation (C.14), which is the final result for the gravitino mass

matrix Sαβ, can be written as

S11 =
ie

7

2
φ̂

8V 3

2

{∫

M7

[
dU+ ∧ U+ + 2G ∧ U+

]
+ 2λ

}
,

S22 =
ie

7

2
φ̂

8V 3

2

{∫

M7

[
dU− ∧ U− + 2G ∧ U−

]
+ 2λ

}
, (3.36)

S12 = S21 =
ie

5

2
φ̂

8V 3

2

∫

M7

[
2iG ∧ Ω+ + 2idĉ ∧ Ω+ − 2dJ ∧ Ω+ ∧ z

]
.

Here G denotes the internal part of the background flux which was defined in equation

(3.28), λ is the constant to which the three-form C̃3 is dual in four dimensions and we have

further introduced

U± ≡ ĉ3 + ie−φ̂φ± = ĉ3 ± ie−φ̂Ω− − iJ ∧ z , (3.37)

where ĉ3 denotes the purely internal value of the three-form field Ĉ3 which which was

defined in equation (3.23).

The diagonal terms in the mass matrix correspond to the gravitino masses for separate

compactifications on the two G2 structures. This follows from associating each of the four-

dimensional gravitini with one of the two internal spinors in the G2 forms (2.12). We can

also read off the prepotentials, P x and Qx for the hypermultiplets and the Kähler potential,

K, for the vector multiplets of the N = 2 supergravity by comparing the mass matrix with
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the general expression for an N = 2 gauged supergravity [37 – 39]

Sαβ =
ie

1

2
K

2
σx

αβ

(
P x

AXA − QxAFA

)
, (3.38)

where P x
A and QxA are the electric respectively magnetic prepotentials which depend on the

hypermultiplets in the theory while (XA, FA) is a symplectic section which characterizes

the special Kähler geometry of the vector multiplet scalars. Note that we have used the

general formula for the N = 2 gauged supergravity mass matrix which appears when both

electric and magnetic gaugings are present. This is because we expect to have both type

of gaugings which is in general signaled by the presence of massive tensor multiplets in the

four-dimensional effective action. It is easy to infer that such massive tensors appear if one

takes into account that the one-form z, used in the expansion (3.15), is not closed. Squaring

the field strength which comes from this expansion, B2 will pick up a mass proportional to∫
dz ∧ ?dz.

Finally we note that in a generic vacuum the off diagonal components of the mass

matrix are non-vanishing and therefore the gravitini as defined in equation (3.32) are not

mass eigenstates. The masses of the two gravitini are then given by the eigenvalues of

the mass matrix evaluated in the vacuum. If these masses are equal and the two gravitini

physically massless then supersymmetry is preserved in the vacuum. However this is not the

case in general and then one encounters partial (when one gravitino is physically massless)

or total spontaneous supersymmetry breaking. We shall come back to this issue in section 5.

4. Preserving N=2 supersymmetry

In this section we will consider the case where the internal manifold is one that will preserve

the full N = 2 supersymmetry in the vacuum. We will begin by studying the constraints

such a solution should satisfy in section 4.1, moving onto studying the form of the mass

matrix for this solution in section 4.1.1. Finally in section 4.2 we will go through an explicit

example of such a vacuum by considering the coset SO(5)/SO(3)A+B .

4.1 N=2 solution

In this section we will classify the most general manifolds with SU(3) structure that are

solutions to M-theory that preserve N = 2 supersymmetry with 4D spacetime being Ein-

stein and admitting two Killing spinors. In order to study such solutions in full generality

we allow for a warped product metric

ds2
11 = e2A(y)gµν(x)dxµdxν + gmn(x, y)dymdyn , (4.1)

but will eventually show that the warp factor, A(y), vanishes. This class of solutions has

also been recently discussed in [22]. We look for solutions to the eleven-dimensional Killing

spinor equation

∇Mη +
1

288

[
Γ NPQR

M − 8δ
[N
M ΓPQR]

]
F̂NPQR η = 0 . (4.2)
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For the background field strength F̂MNPQ above we will consider the most general Ansatz

compatible with four-dimensional Lorentz invariance. Therefore, the only non-vanishing

components of F̂ are F̂mnpq and Fµνρσ = fεµνρσ.

Given that the internal manifold has SU(3) structure we know there exist at least two

globally defined Majorana spinors and so we take a killing spinor Ansatz

η = θ1(x) ⊗ ε1(y) + θ2(x) ⊗ ε2(y) . (4.3)

Since we are looking for N = 2 solution we treat θ1 and θ2 as independent. This will

lead to more stringent constraints than the N = 1 case, where they may be related, which

will make finding the most general solution straightforward. As we are looking for four-

dimensional maximally symmetric spaces, the Killing spinors θ1,2 satisfy

∇µθi = − i

2
Λi

1γµγ5θi +
1

2
Λi

2γµθi (no sum over i) , (4.4)

where the index i = 1, 2 labels the two spinors. The integrability condition reads

Rµν = −3
[(

Λi
1

)2
+

(
Λi

2

)2
]
gµν , i = 1, 2 , (4.5)

and so one immediately sees that not all Λi
1,2 are independent, but have to satisfy

(
Λ1

1

)2
+

(
Λ1

2

)2
=

(
Λ2

2

)2
+

(
Λ2

2

)2
. (4.6)

Now decomposing the Killing spinor equation into its external and internal parts we arrive

at the following equations

∇mε1,2 =

(
i

12
e−4Afγm

)
ε1,2 , (4.7)

0 =
(
γ npqr

m F̂npqr − 8γpqrF̂mpqr

)
ε1,2 , (4.8)

(
i

2
Λ1,2

1

)
ε1,2 =

(
1

2
eAγn∂nA +

i

6
e3Af

)
ε1,2 , (4.9)

(
1

2
Λ1,2

2

)
ε1,2 =

(
− 1

288
eAγnpqrF̂npqr

)
ε1,2 . (4.10)

In order to classify this solution from the point of view of the SU(3) structure we have find

the corresponding non-vanishing torsion classes by computing the exterior derivatives of

the structure forms. Using their definition in terms of the spinors (2.4) and applying the

results above one finds

dV =
1

3
fJ ,

dJ = 0 , (4.11)

dΩ = −2i

3
fΩ ∧ V ,

dA = 0 .
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The first thing to note is that the warp factor A is constant in this vacuum and therefore can

be set to zero by a constant rescaling of the metric. The second thing to observe, comparing

with equation (2.11), is that only the singlet classes R and c2 are non-vanishing. Moreover,

they are not independent, but proportional to each other as they can both be expressed in

terms of the Freund-Rubin parameter f .

From equations (4.7) we can also determine the parameters Λi
1,2, which determine the

value of the cosmological constant, which are given by

Λ1
1 = Λ2

1 =
f

3
,

Λ1
2 = Λ2

2 = 0 .
(4.12)

The Killing spinor equations (4.7) also give constraints on the internal flux that imply

it should vanish. However an easier way to see this is to consider the integral of the external

part of the eleven-dimensional Einstein equation which reads
∫

R(4) +
4

3

∫
f2 +

1

72

∫
F̂mnpqF̂

mnpq = 0 . (4.13)

We see that substituting (4.12) we indeed recover F̂mnpq = 0. Since f is a constant, this

means that the Bianchi Identity dF = 0 is indeed satisfied and so follow all the equations

of motion.

Finally we note that in terms of the two G2 structures ϕ±, equations (4.11) can be

recast into a simple form

dϕ± =
2

3
f ? ϕ± , (4.14)

which shows that both G2 structures are in fact weak G2.

4.1.1 The mass of the gravitini

We can now use this solution to illustrate the discussion on the relation between the

gravitini masses and supersymmetry and to check our form of the mass matrix. Inserting

the solution just derived into the mass matrix we should find that the masses of the two

gravitini degenerate and that they are both physically massless. Taking the solution (4.11)

from the previous section the mass matrix (3.36) reads

S12 = 0 ,

S11 = S22 =
−ife

7

2
φ̂

3V 1

2

,
(4.15)

which indeed shows that the masses of the two gravitini are the same. To show that the

two gravitini are physically massless we recall that in AdS space the physical mass of the

gravitino is given by

mphys = m3/2 − l , (4.16)

where m3/2 is the actual mass parameter which appears in the Lagrangian (in our case

|S11|), while l is the AdS inverse radius and is defined as

R = −12l2 , (4.17)

with R the corresponding Ricci scalar.
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In order to obtain the AdS radius correctly normalised we recall that the mass matrix

(4.15) was obtained in the Einstein frame which differs from the frame used in the previous

section by the Weyl rescaling (3.12). Inserting this into (4.5) we obtain the properly

normalised AdS inverse radius

l =
fe

7

2
φ̂

3V 1

2

. (4.18)

Note that here, as well as in equation (4.15), the fields φ̂ and V should be replaced with

their particular values which they have for this solution. Equation (4.18), together with

(4.15), shows that the physical mass of the gravitini, (4.16), vanishes confirming our expec-

tations that the vacuum determined in the previous section does indeed preserve N = 2

supersymmetry.

4.2 The coset SO(5)/SO(3)A+B

In order to see the above considerations at work we will now go through an explicit example

of a manifold that satisfies the N = 2 solution discussed in the previous sections. The

manifold we will consider is the coset space SO(5)/SO(3)A+B . Cosets are particularly

useful as examples of structure manifolds because the spectrum of forms that respect the

coset symmetries is highly constrained. There are more details about cosets in general and

about this particular coset in the appendix, or, for further reference we refer the reader

to [46]. In this section we summarise the results and construct a basis of forms with which

we can perform the compactification.

We begin by finding the most general symmetric two-tensor that respects the coset

symmetries, this will be the metric on the coset and is given by

g =




a 0 0 0 d 0 0

0 a 0 0 0 d 0

0 0 a 0 0 0 d

0 0 0 b 0 0 0

d 0 0 0 c 0 0

0 d 0 0 0 c 0

0 0 d 0 0 0 c




, (4.19)

where all the parameters are real. The parameters of the metric are the geometrical moduli

and we see that we have four real moduli on this coset. Note that there is a positivity

domain ac > d2. Having established the metric on the coset we can move on to find the

structure forms. The strategy here is to find the most general one, two and three forms

and then impose the SU(3) structure relations on them. It is at this stage that we really

see what the G structure of the coset is. This analysis is performed in the appendix and

we find that the structure forms are given by

V = eφ̂z ,

J = v ω , (4.20)

Ω = ζ3α0 + ζ4α1 + ζ6β
1 + ζ7β

0 ,
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where the relations between the ζs and the metric moduli are given in the appendix. The

basis forms satisfy the differential relations

dz = −ω ,

dω = 0 ,

dα0 = z ∧ α1 ,

dβ0 = −z ∧ β1 , (4.21)

dα1 = 2z ∧ β1 − 3z ∧ α0 ,

dβ1 = −2z ∧ α1 + 3z ∧ β0 .

The structure forms (4.20) show that indeed the coset has exactly SU(3) structure. In

terms of the moduli classification we have been using it has a dilaton, one Kähler modulus

and one complex structure modulus5 thus making up the four degrees of freedom in the

metric. We also show in appendix 4.2 that scalar functions are in general not compatible

with coset symmetries and therefore we conclude that for such compactifications no warp

factor can appear.

4.2.1 Finding N = 2 minima

In this section we want to find out if the potential which arises from the compactification

on the coset above has a minimum where the geometric moduli are stabilised. In particular

we wish to look for minima that preserve N = 2 supersymmetry and correspond to the

solution discussed in section 4.1. As usual, in a bosonic background, the condition for

supersymmetry is the vanishing of the supersymmetry variations of the fermions. This is

precisely what we used in the previous section and thus a supersymmetric solution should

satisfy all the conditions derived there, and in particular (4.11). It is easy to see that the

forms (4.20) obey

dV = −eφ̂

v
J ,

dJ = 0, (4.22)

dΩ = z ∧
[
(−3ζ4)α0 + (ζ3 − 2ζ6) α1 + (2ζ4 − ζ7)β1 + (3ζ6) β0

]
.

Therefore these forms will in general not satisfy the solution constraints (4.11). Requiring

them to match the solution gives a set of equations for the moduli that will exactly deter-

mine the value of the moduli in the vacuum. For the coset at hand these are easy to solve

and the solution is given by

eφ̂ =
6

1

3

√
42

14
λ

1

6 ,

v =
6

2

3

7
λ

1

3 , (4.23)

ζ3 = −ζ6 = −iζ4 = iζ7 =
6

49
(i − 1)

√
7λ,

5As is expected form N = 2 supergravity the parameters ζ3,ζ4,ζ6 and ζ7 describe only two real degrees

of freedom.
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where we have replaced the Freund-Rubin flux f by true flux parameter λ from equation

(3.30). Note that this solution fixes all the geometric moduli which is an important result

for M-theory compactifications. It is important to stress however that ζ are not the true

complex structure moduli, but are related to them by the rescaling (3.9). However, the

complex structure moduli defined in (3.21), which can be most easily read off in special

coordinates, do not depend on the rescalings of Ω and therefore, in our case the value of

the single modulus is given by

z1 =
Z1

Z0
=

ζ4

ζ3
= i (4.24)

It can also be shown that the other scalar fields, which come from the expansion of the

3-form Ĉ3, (3.22), in the forms (4.21) are also stabilised. A simple argument to support this

statement is that non-vanishing values of these scalars would lead to a non-zero internal F̂4

flux at this vacuum solution due to the non-trivial derivative algebra the basis forms satisfy,

(4.21), which in turn is ruled out by the supersymmetry conditions found in section 4.1.

Hence, these scalar fields are forced by supersymmetry to stay at zero vacuum expectation

value and therefore are fixed.

It is also worth observing one more thing regarding this solution. If we think in terms

of the type IIA quantities we see that the Kähler modulus v and the dilaton eφ̂ are not

independent and choosing to stay in the supergravity approximation on type IIA side,

ie take v À 1, drives the theory to the strong coupling regime which explains why such

solutions can not be seen in the perturbative type IIA approach.

Finally we note that as the solution above is supersymmetric, the four-dimensional

space-time is AdS with the AdS curvature which scales with λ as

l ∼ 1

λ
1

6

. (4.25)

Thus, in the large volume limit (ie λ À 1) the four-dimensional space-time approaches flat

space.

5. Preserving N = 1 supersymmetry

In this section we will analyse the case where we only preserve N = 1 supersymmetry in the

vacuum. We will show that this occurs due to spontaneous partial supersymmetry breaking,

much like in massive type IIA [23], and that it is possible to write an effective N = 1 theory

about this vacuum. We will derive the Kähler potential and superpotential for this theory

and go through an explicit example of a manifold that leads to this phenomenon.

5.1 Spontaneous partial supersymmetry breaking

In section 3.3 we showed that for certain manifolds there is a mass gap between the two

gravitini in the vacuum and if this is the case then the vacuum no longer preserves the

full N = 2 supersymmetry but rather spontaneously breaks to either N = 1 or N = 0

supersymmetry the former corresponding to one physically massless gravitino and the latter

to no massless gravitini. In this section we will consider the case where the vacuum still

preserves N = 1 supersymmetry. With this a mass gap of the scale of supersymmetry
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breaking, which is set by the vev of the scalars, appears throughout the spectrum and so

we can consider specifying an effective N = 1 theory that is composed of the lower mass

states. The superpotential and the Kähler potential for this theory will then be given by

the mass of the physically massless gravitino as is usual for N = 1 theories. Determining

the superfield spectrum is a more complicated problem and an important role is played by

constraints on general partial supersymmetry breaking.

Partial supersymmetry breaking has been considered in [47 – 51]. Following their dis-

cussions we briefly summarise how the matter sector of the theory is affected by the break-

ing. In the N = 2 theory the fields were grouped into multiplets as described in Table 1.

Once supersymmetry is broken these multiplets should split up into N = 1 multiplets.

The N = 2 gravitational multiplet will need to split into a N = 1 ’massless’ gravitational

multiplet and a massive spin-3
2 multiplet [51]

(
gµν , ψ1, ψ2, A

0
)
→ massless (gµν , ψ1) + massive

(
ψ2, A

0, A1, χ
)

(5.1)

Here A1 is a vector field which has to come from one of the vector multiplets and χ is a

spin-1
2 fermion which come from a hypermultiplet. Moreover, one also needs one Goldstone

fermion and two Goldstone bosons to be eaten by the gravitino and the two vector fields

respectively which become massive, and these additional Goldstone fields also come from

the hypermultiplet sector. Additionally, depending on the details of the theory there will

be a certain number of vector and hypermultiplets which also become massive in this pro-

cess. Integrating out all the massive fields one is left with an N = 1 supergravity theory

coupled to vector and chiral multiplets. The scalar fields in an N = 1 theory span a Kähler

manifold which has to be a subset of the N = 2 scalar manifold. With the scalar fields

of the N = 2 vector multiplets the situation is quite simple as they are already complex

coordinates on a (special) Kähler manifold. However, for the hyper-scalars this is not the

case, and it is in general non-trivial to find the right combinations which will represent

the correct complex coordinates. For simple cases, as we will encounter in this paper, this

can be done and one can find explicitely the correct complex combinations which span the

N = 1 scalar Kähler manifold.

Before concluding this section we should also mention some subtle issues related to

the spontaneous N = 2 → N = 1 breaking. It has been shown [47 – 49, 51, 52] that

in Minkowski space spontaneous partial supersymmetry breaking can only occur if the

symplectic basis in the vector-multiplet sector is such that no prepotential exists. However

these results do not apply to the cases we discuss in this paper for the following reasons.

First of all, the no-go result above has been obtained for purely electric gaugings of the

N = 2 supergravity. Here we will see that we encounter magnetic gaugings as well and

going to purely electric gaugings requires to perform some electric-magnetic duality which,

in special cases, can take us to a symplectic basis where no prepotential exists. The second

argument is that we will encounter the phenomenon of spontaneous partial supersymmetry

breaking in AdS space and in such a case it is not clear how to extend the no-go arguments

of [47].6

6We thank Gianguido Dall’Agata for useful discussions on this subject.
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5.2 The superfields and Kähler potential

Although the general pattern of partial supersymmetry breaking is constraining it is not

enough to determine the superfields in general. The particular difficulty, as explained

before, lies in truncating the hypermultiplet spectrum by finding the appropriate Kähler

submanifold. However for the special case where we have only the universal hypermultiplet

this is possible. We will therefore restrict our general analysis to such a situation antici-

pating also the fact that the specific example we will study in section 5.4 will be of this

type. In order to find models with only one hypermultiplet we will rely on the observation

of [53], that six-dimensional manifolds with SU(3) structure for which Ω+ is exact fea-

ture no complex structure moduli and therefore the hypermultiplet sector corresponding

to compactifications on such manifolds consists only of the universal hyper-multiplet. We

therefore restrict ourselves to the case where the torsion classes in (2.11) are restricted to

Re(c1) = V2 = S1 = c2 = W2 = A2 = 0 ,

Im(c1) 6= 0 ,
(5.2)

and we see that under these conditions that the three form Ω+ is indeed exact.

We further have to determine the gravitino mass matrix for this situation. Using (3.36),

(3.14), (3.7) we find that in the particular case considered above, (5.2), the gravitino mass

matrix becomes diagonal due to the fact that the internal flux G has to be closed due to

the Bianchi identity

S11 =
i

8

e2φ

√V6

∫

M7

[dU+ ∧ U+ + 2G ∧ U+ + 2λ] ,

S22 =
i

8

e2φ

√V6

∫

M7

[dU− ∧ U− + 2G ∧ U− + 2λ] , (5.3)

S12 = S21 = 0 .

The condition (5.2) appears to be quite strong and we have already come across an example

where this is violated in section 4.2. On the other hand we know from ref. [22] that an N = 1

anti-deSitter vacuum, which is required for all the moduli to be stabilised, necessarily means

that J is not closed. Hence we always expect at least one of the torsion classes in (5.2) to

be non-vanishing. Other than this we must take the condition as a limitation of this paper.

Let us now see how we can identify the surviving degrees of freedom in a spontaneously

broken N = 2 theory which comes from a compactification on a manifold which satisfies

the requirements above. First of all we know that in order to have partial susy breaking

we need at least two Peccei-Quinn isometries of the quaternionic manifold to be gauged

such that the corresponding scalar fields become Goldstone bosons which are eaten by

the graviphoton and another vector field in the theory. In the model at hand, where we

only have one hypermultiplet, we have three such shift symmetries which can be gauged.

They correspond to the axion, the dual of the two-form in four dimensions, and the two

scalar fields which arise from the expansion of the three-form ĉ3 in the basis of three-forms

(α0, β
0). In order to gauge one of these last two directions, or a combination thereof, we

need that the corresponding combination of the forms α0 and β0 is exact. Without loss of
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generality we will assume that β0 is exact. Consistency with equations (3.18) and (3.19)

implies then that α0 is not closed. We therefore see that the scalar field which comes from

the expansion in the form β0, which we denote ξ̃0, is a Goldstone boson and will be eaten

by one (or a combination) of the vector fields which come from the expansion of C3. Then

the other Goldstone boson can only be given by the dual of the two form B̃2. The way

to see how this direction becomes gauged is obscured by the fact that we are dealing with

a two-form rather then directly with a scalar field, but we can note that provided z is

not closed, but its derivative is proportional to one of the two forms ωi, there will appear

in the compactified theory a Green-Schwarz interaction, B̃2 ∧ dA, which upon dualization

precisely leads to the desired gauging.7 Therefore we learn that the fields which survive

the truncation in the N = 1 theory are the dilaton and the second scalar field from the

expansion of ĉ3 which we denote by ξ0. The final thing which we need to do is to identify

the correct complex combination of these two fields which defines the correct coordinate

on the corresponding Kähler submanifold. Knowing that the N = 2 gravitino mass matrix

becomes the superpotential in the N = 1 theory, which has to be holomorphic in the chiral

fields, we are essentially led to the unique possibility

U0± ≡ ξ0 ± ie−φ

(−4iZ0

F0

) 1

2

, (5.4)

where the sign ± is determined by which of the gravitini is massless and we will drop the

index unless required for clarity. Z0 and F0 are the coefficients of the expansion of Ω in

the basis (α0, β
0), (3.21), and the quantity −4iZ0/F0 is a positive real number as in the

particular choice of symplectic basis we have made (β0 is exact) Z0 is purely imaginary.

To check that this is indeed the correct superfield we should make sure we recover

the moduli space metric from the Kähler potential in the gravitino mass. The appropriate

kinetic terms in (3.16) read

SU
kin = (5.5)

=

∫ √−gd4x

[
−

(
F0

−4iZ0

)
e2φ∂µ

(
ξ0+ie−φ

(−4iZ0

F0

) 1

2

)
∂µ

(
ξ0−ie−φ

(−4iZ0

F0

)1

2

)]
.

The gravitino mass in the N = 1 theory is given by the product of the Kähler potential

and the superpotential

M 3

2

= e
1

2
K |W |. (5.6)

From this we can use (5.3) to read off the Kähler potential

eK/2 =
e2φ

√
8V6

, (5.7)

It is then easily shown that indeed the superfield and Kähler potential satisfy

∂U0∂Ū0 ln

[
e4φ

8V6

]
= −

(
F0

−4iZ0

)
e2φ. (5.8)

7The issue of the dualization is further obstructed by the fact that B will be massive. This, as explained

at the end of section 3.3, is triggered by the non-closure of the one form z, which leads to mass term for

the two-form field B̃2 of the type
R

dz ∧ ∗dz.
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Hence we have identified the correct superfield in the truncated spectrum. Determining

the superfields arising from the N = 2 vector multiplets is a much easier task as they are

just the natural pairing found in (3.17)

ti ≡ bi − ivi, (5.9)

where the index i now runs over the lower mass fields.

5.3 The superpotential

The superpotential for the N = 1 theory can be read off from the gravitino mass to be

W =
i√
8

{∫

M7

[
dU± ∧ U±

]
+ G ∧ U± + 2λ

}
, (5.10)

where again the ± sign is fixed by the lower mass state. From this expression for the

superpotential we can see that we should generically expect a constant term λ, linear

terms in U , quadratic terms t2, U2 as well as mixed terms tU . These type of potentials

will, in general, stabilise all the moduli and we will see such an example in the next section.

It is instructive to note that finding a supersymmetric solution for this superpotential

automatically solves the equations which are required for a solution of the full N = 2 theory

to preserve some supersymmetry. Therefore, for such a solution, it would be enough to

show, using the mass matrix (5.3), that a mass gap between the two gravitini forms in

order to prove that partial supersymmetry breaking does indeed occur.

5.4 The Coset SU(3) × U(1)/U(1) × U(1)

In this section we will go through an explicit example of a manifold that preserves N = 1

supersymmetry in the vacuum. The manifold we will be considering is the coset SU(3) ×
U(1)/U(1) × U(1) and for simplicity we shall turn off the four-form flux G = 0. Details of

the structure of the coset can be found in the appendix and in this section we summarise

the relevant parts. The coset is specified by three integers p,q, and r that determine the

embeddings of the U(1) × U(1) in SU(3) × U(1), where the integers satisfy

0 ≤ 3p ≤ q , (5.11)

with all other choices corresponding to different parameterisations of the SU(3). As with

the previous coset example we can use the coset symmetries to derive the invariant SU(3)

structure forms and the metric. The metric is given by

g =




a 0 0 0 0 0 0

0 a 0 0 0 0 0

0 0 b 0 0 0 0

0 0 0 b 0 0 0

0 0 0 0 c 0 0

0 0 0 0 0 c 0

0 0 0 0 0 0 d




, (5.12)

– 26 –



J
H
E
P
0
5
(
2
0
0
6
)
0
4
8

where the parameters a, b, c, d are all real. We can write the invariant forms as

V =
√

dz ,

J = aω1 + bω2 + cω3 , (5.13)

Ω =
√

abc
(
iα0 − 4β0

)
.

This basis can be shown to satisfy the following differential relations

dz = miωi ,

dωi = eiβ
0 , dω̃i = 0 , (5.14)

dα0 = eiω̃
i , dβ0 = 0 ,

where we have introduced two vectors ei = (2, 2, 2), and mi = (α,−β, γ), i = 1, 2, 3

which encode the information about the metric fluxes. The quantities α, β and γ are not

independent, but satisfy α − β + γ = 0 and in terms of the integers p and q have the

expressions

α ≡ q√
3p2 + q2

,

β ≡ 3p + q

2
√

3p2 + q2
, (5.15)

γ ≡ 3p − q

2
√

3p2 + q2
.

This ends our summary of the relevant features of the coset. We see that this manifold

indeed has the required torsion classes (5.2) and, as expected, has no complex structure

moduli and three Kähler moduli.

5.4.1 N = 1 minimum

As explained in [54], M-theory compactifications on the coset manifold presented above

are expected to preserve N = 1 supersymmetry in the vacuum. Therefore we can use the

machinery developed at the beginning of this section and derive the N = 1 theory in the

vacuum. We will also turn off the four-form flux G and so, using equations (5.7) and (5.10)

we find the superpotential and Kähler potential to be

W =
1√
8

[
4U0

(
t1 + t2 + t3

)
+ 2αt2t3 − 2βt1t3 + 2γt1t2 + 2λ

]
, (5.16)

K = −4ln
[
−i

(
U0 − Ū0

)]
− ln

[
−i

(
t1 − t̄1

) (
t2 − t̄2

) (
t3 − t̄3

)]
+ const. (5.17)

where the superfields ti were defined in (5.9) while for U0 we have

U0± = ξ0 ± ie−φ , (5.18)

as (5.13) gives −4iZ0/F0 = 1. We can look for supersymmetric vacua to this action by

solving the F-term equations. For convenience we restrict to the family of cosets with p = 0

though the results can be reproduced for more general choices of embeddings. We find the
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solution to the F-term equations

t1

2
= t2 = t3 = U0 = −i

√
λ

3
. (5.19)

At this point we can go back to check which of the gravitini is more massive. Inserting

the solution (5.19) into the expression of the mass matrix (5.3) we obtain

S11 > S22 , (5.20)

which means ψ2 is the lighter gravitino and the one that should be kept in the truncated

theory. This gravitino is physically massless as expected. This also fixes the ± sign

ambiguity in the superfield and superpotential so that we have U0 ≡ U0−. Finally we note

that as this solution is a supersymmetric solution of the truncated N = 1 theory and that

according to (5.20) the gravitino masses are not degenerate we indeed have encountered

the phenomenon of partial super symmetry breaking.

5.4.2 The structure in the vacuum

It is informative to look at the form of the G structure of the coset in the vacuum in terms

of the G2 structures. The two G2 forms (2.13) satisfy the vacuum differential and algebraic

relations

dϕ± =
√

2

(
λ

3

) 3

4 [
−8β0 ∧ z ± 2ω1 ∧ ω2 + (±2 + 1)ω2 ∧ ω3 ± 2ω1 ∧ ω3

]
,

2

3
f ? ϕ± =

√
2

(
λ

3

) 3

4 [
±8β0 ∧ z − 2ω1 ∧ ω2 − ω2 ∧ ω3 − 2ω1 ∧ ω3

]
. (5.21)

It is clear to see that only ϕ− is weak-G2, and this is indeed the G2 structure that features

in the superpotential and is associated with the lower mass gravitino. This shows an

explicit mass gap appearing between the two G2 structures which is the same mass gap

that corresponds to the partial supersymmetry breaking which we have used to write an

effective N = 1 theory. Hence we have shown an example of the idea of an effective

G structure where we could have arrived at this truncated N = 1 theory through a G2

structure compactification even though the manifold actually has SU(3) structure. Finally

we should note that we could have used the condition that the manifold should be weak-G2

in the vacuum to solve for the values of the moduli in the vacuum as we did in section 4.2.1

instead of solving the F-term equations.

6. Conclusions

In this paper we studied compactifications of M-theory on manifolds with SU(3) struc-

ture. We showed that these compactifications, under certain assumptions regarding the

expansion basis discussed in section 3.2.1, can be cast into a form much like type IIA com-

pactifications on six-dimensional manifolds with SU(3) structure. The classical potential
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for the fields in four-dimensions differed however from the IIA case and we have proved in

two explicit examples that one can find vacua which fix all the moduli without the need of

non-perturbative effects.

We have also shown that depending on the different torsion classes which can be turned

on for such manifolds one can arrange to preserve either N = 1 or N = 2 supersymmetry.

We have also argued that in the case of the N = 1 solution one encounters the phenomenon

of partial supersymmetry breaking. This arises due to the fact that the two spinors which

define the SU(3) structure satisfy different differential relations – or in other words, they

are eigenfunctions of the Dirac operator corresponding to different eigenvalues – leading in

this way to different masses for the corresponding gravitini. In such a case we have seen

that effectively one can ignore from the beginning one of the spinors which make up the

SU(3) structure leading in this way to a G2-like compactification.

There are many interesting direction than can be followed from this paper. It would

be interesting to consider manifolds that are more general then the restriction (5.2) and in

particular the case where both the c1 and c2 torsion classes are non-vanishing should lead

to a theory with a vacuum that preserves N = 1 supersymmetry and has a stable vacuum

where the axions are stabilised at non-zero values. This would correspond to the unwarped

solution with non-vanishing exact internal flux found in [22].

We have not touched on the subject of realistic particle content in this paper one

reason being that one can not possibly achieve a viable spectrum of particles in M-theory

compactifications by considering smooth manifolds as we do in this paper. However, in the

effort to construct four-dimensional theories which contain chiral matter and gauge fields

from M-theory compactifications (for recent developments see [55]), considering seven-

dimensional manifolds with SU(3) structure should be very interesting because, as shown

in this paper one can easily fix all the bulk moduli. This could be supplemented by turning

on torsion classes that would lead to off-diagonal terms in the mass matrix that can be

interpreted as D-terms in the effective N = 1 theory thereby breaking supersymmetry

spontaneously.
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A. Conventions

In this appendix we outline the conventions used throughout this paper. The index ranges

are

M,N,P,Q,R, S, T, U, V,W = 0, . . . , 10 ,
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a, b,m, n, p, q, r, s, t = 0, . . . , 6 , (A.1)

µ, ν, ρ = 0, . . . , 3

i, j, k = 1, . . . ,Number of two − forms in the basis ,

A,B = 1, . . . ,Number of three − forms in the basis ,

α, β = 1, 2 .

We worked with a mostly plus metric signature

η̂11 = (−1,+1,+1, . . . ) , (A.2)

where generallyˆdenotes eleven-dimensional quantities. The ε̂ tensor density is defined as

ε̂0123... = +1 , (A.3)

and we define the inner product between forms as

(ωpyνq)µp+1...µq
≡ 1

p!
(ωp)

µ1...µp (νq)µ1...µpµp+1...µq
. (A.4)

The eleven-dimensional spinor conventions are such that the charge conjugation operator

is given by Γ̂0
¯̂
Ψ = Ψ̂†Γ̂0 . (A.5)

We decompose the eleven-dimensional gamma matrices as

Γ̂µ = γµ ⊗ 1 ,

Γ̂m = γ5 ⊗ γm , (A.6)

with γm imaginary and γµ real and

−iγ0123 = γ5 ,

γ01...6 = − i .
(A.7)

B. Ricci scalar reduction

In this appendix we reduce the eleven-dimensional Ricci scalar using the metric Ansatz

(3.2). Before we begin the calculation we should comment on the kind of variations we

consider here. In general, seven-dimensional manifolds with SU(3) structure can have

isometries that produce gauge fields in the effective lower dimensional theory. For the

moment we are not interested in such metric variations and only treat the scalar modes

which appear from the fluctuations of the metric on the internal manifold. Moreover we

are only interested in the lightest modes in the Kaluza–Klein tower. Thus we consider a

metric, including the fluctuations, of the following form

ds2
11 = ḡµν(x)dxµdxν + ḡmn(x, y)dymdyn (B.1)

= ḡµν(x)dxµdxν + [ḡ0
mn(y) + h̄mn(x, y)]dymdyn .
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Direct computation of the 11d Ricci scalar gives
∫ √−g11d

11X
1

2
R11

=

∫ √−g11d
11X

1

2

[
R̄4 + R̄7 − ḡmn

¤̄4ḡmn +

(
3

4
ḡmpḡnq − 1

4
ḡmnḡpq

)
(∂ḡmn) (∂ḡpq)

]

=

∫ √−ḡ4d
4x

∫ √
ḡd7y

1

2

[
R̄4 + R̄7 −

1

4
(ḡmpḡnq − ḡmnḡpq) (∂ḡmn) (∂ḡpq)

]
,

where in the last equation we have performed a partial integration with respect to the four-

dimensional integral. At this point we want to replace the metric variations with variations

of the structure forms. Although eventually we wish to parameterise the variations in terms

of the SU(3) structure forms at this point it is easier to work with the G2 forms. Using

equation (3.5) we arrive at

∫ √−g11d
11X R11 =

∫ √−ḡ4d
4x

∫ √
ḡ

[
R̄4 + R̄7 −

1

12
(∂ϕ̄)mnp(∂ϕ̄)mnp +

3

2

(∂V̄)2

V̄2

]
,

(B.2)

where to reach this we used the G2 identities

ϕ pq
m ϕm

ab = (?ϕ)pq
ab + 2δpq

ab ,

9 (?ϕ)
[pq

[ab δ
m]
n] = (?ϕ)pqmt (?ϕ)abnt + ϕpqmϕabn − 6δpqm

abn ,

ϕyδϕ = 3V−1δV , (B.3)

and the fact that only the symmetric part of ϕ pq
m δϕnpq contributes to the gauge indepen-

dent metric variations. Here V̄ is the volume of the internal manifold as measured with

the metric ḡmn which thus contains the metric fluctuations. Note that because we only

consider the lowest KK states, R̄4 is independent of the internal coordinates and thus its

integration produces a factor of the seven-dimensional volume V̄. In order to put the four-

dimensional action in the standard form we further need to rescale the four dimensional

metric as

ḡµν =
1

V̄ gµν . (B.4)

Apart from normalising the Einstein-Hilbert term correctly this rescaling will also produce a

term which precisely cancels the last term of (B.2). Thus the final form of the compactified

eleven-dimensional Ricci scalar takes the form
∫ √−g11d

11X R11 =

∫ √−g4d
4x

[
R4 +

∫ √
ḡ
(
R̄7 −

1

12
(∂ϕ̄)mnp(∂ϕ̄)mnp

)]
. (B.5)

At this stage we can move back to using the SU(3) forms using the translation equa-

tion (2.13). We also move to the string frame by rescaling the internal metric

ḡmn = e−
2

3
φ̂gmn , (B.6)

where the dilaton is defined as in equation (3.6). Defining the SU(3) structure forms with

respect to the metric gmn the decomposition (2.13) becomes

ϕ̄± = e−φ̂(±Ω− − J ∧ V ) . (B.7)
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Before identifying the correct degrees of freedom in four dimensions, as discussed in sec-

tion 3.2 we need to take out the Kähler moduli dependence from Ω and we do this by

defining a ’six-dimensional’ volume V6 and the true ’holomorphic’ three-form Ωcs as in

equations (3.7) and (3.10). With these definitions we have

∂ϕ̄± = e−φ
(
± (∂φ) e

1

2
KcsΩ−

cs ± ∂
(
e

1

2
KcsΩ−

cs

)
− 1√V6

∂J ∧ V ) , (B.8)

where it can be easily checked that

(
∂

(
e

1

2
KcsΩ−

cs

))
mnp

(
e

1

2
KcsΩ−

cs

)mnp
= 0 , (B.9)

and so when we square the expression (B.8) there is no mixing between the various terms.

Inserting (B.8) into (B.5) we arrive at the final expression (3.13).

C. The gravitini mass matrix

In this appendix we will derive the four-dimensional gravtini mass matrix through dimen-

sional reduction of the appropriate terms in the eleven-dimensional action. We wish to

work in terms of the SU(3) structure quantities as defined in section 2.2 and so we begin

by writing the eleven-dimensional gravitino ansatz (3.32) in terms of the four-dimensional

chiral gravitini (3.32) and the complex internal spinors (2.3)

Ψ̂µ = V− 1

4

[(
ψ1

+µ + ψ1
−µ

)
⊗ (η+ + η−) − i

(
ψ2

+µ + ψ2
−µ

)
⊗ (η+ − η−)

]
. (C.1)

We now go through each term in (3.1) that will contribute to the four-dimensional mass

matrix.

The kinetic term We begin with the eleven-dimensional kinetic term which will produce

a mass term in four dimensions for the particular index range choices

L1 = −1

2
Ψ̄µΓ̂µnνD̂nΨν . (C.2)

This term is only non-vanishing when the internal spinors are not covariantely constant and

so will correspond to the potential induced by the torsion on the manifold. To calculate

this more precisely we use the relation for the covariant derivative acting on the spinors

Dmη± =
1

4
κmnpγ

npη± , (C.3)

where κmnp is the contorsion on the internal manifold which is anti-symmetric in its last

two indices. Inserting (C.1) into (C.2) and using (C.3) to evaluate the derivative on the

spinors as well as (2.4) to replace the spinor bi-linears with the SU(3) forms we arrive at

L1 = − 1

2V 1

2

{
ψ̄1

+µγµνψ1
−ν

[
i

2
κ[mnp] (J ∧ V )mnp − i

2
κ[mnp]Ω

−mnp

]

+ ψ̄2
+µγµνψ2

−ν

[
i

2
κ[mnp] (J ∧ V )mnp +

i

2
κ[mnp]Ω

−mnp

]
(C.4)
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+ ψ̄1
+µγµνψ2

−ν

[
−iκm[np]V

[nδp]m − i

2
κ[mnp]Ω

+mnp

]

+ ψ̄2
+µγµνψ1

−ν

[
iκm[np]V

[nδp]m − i

2
κ[mnp]Ω

+mnp

]
+ c.c.

}
.

Now using the identity

ψ̄2
+µγµνψ1

−ν = ψ̄1
+µγµνψ2

−ν , (C.5)

we can see that actually the first terms in the third and fourth lines cancel. This can be

reasoned from the fact that the mass matrix should be symmetric. Using (C.3) we can

operate on the spinor bi-linears (2.4) and derive the following useful relations

(dV )mn = 2κ[mn]pV
p ,

(dJ)mnp = 6κ r
[mn Jr|p] , (C.6)

(dΩ)mnpq = 12κ r
[mn Ωr|pq] .

With this (C.6) we can eliminate the contorsion from (C.5) in favour of differential relations

of the structure forms and we obtain

L1 = − 1

2V 1

2

{
ψ̄1

+µγµνψ1
−ν

×
[
i

4
(dV )mn Jmn+

i

96

(
dΩ−

)
mnpq

(
?Ω−

)mnpq
+

i

12
(dJ)mnp

(
Ω+

)mnp
]

+ ψ̄2
+µγµνψ2

−ν

×
[

i

4
(dV )mn Jmn +

i

96

(
dΩ−

)
mnpq

(
?Ω−

)mnpq − i

12
(dJ)mnp

(
Ω+

)mnp
]

+ ψ̄1
+µγµνψ2

−ν

[
− i

12
(dJ)mnp

(
Ω−

)mnp
]

+ ψ̄2
+µγµνψ1

−ν

[
− i

12
(dJ)mnp

(
Ω−

)mnp
]

+ c.c.

}
. (C.7)

This concludes the reduction of the kinetic term and we now move on to the flux terms.

The flux terms We begin be reducing the term

L2 = − 1

16
Ψ̄µΓ̂ρσΨνFµρσν . (C.8)

This term arises from the purely external Freud-Rubin flux which we write as in (3.27)

and (3.30). Then substituting (C.1) into (C.8) and after some gamma matrix algebra we

arrive at

L2 =
[
iψ̄1

+µγµνψ1
−ν + iψ̄2

+µγµνψ2
−ν + c.c.

] [
1

4V 3

2

(
λ +

1

2

∫
ĉ3 ∧ F

)]
. (C.9)

The second flux term reads

L3 = − 3

4(12)2
Ψ̄µΓ̂µνlmnpΨνFlmnp . (C.10)
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This is the term from the purely internal flux. Again the reduction is simple and gives

L3 =
1

4(12)2V 1

2

{
ψ̄1

+µγµνψ1
−ν

[
F lmnp

(
J ∧ V − Ω−

)rst
ε̂lmnprst

]

+ ψ̄2
+µγµνψ2

−ν

[
F lmnp

(
J ∧ V + Ω−

)rst
ε̂lmnprst

]
(C.11)

+ ψ̄1
+µγµνψ2

−ν

[
−F lmnp

(
Ω+

)rst
ε̂lmnprst

]

+ ψ̄2
+µγµνψ1

−ν

[
−F lmnp

(
Ω+

)rst
ε̂lmnprst

]
+ c.c.

}
.

Finally we recall that the purely internal flux has a contribution from the the background

flux G, and one which is due to the torsion of the internal manifold dĉ3, which combine

into

Flmnp = Glmnp + (dĉ3)lmnp . (C.12)

After performing the Weyl rescalings (3.12), the contributions computed above, (C.7),

(C.9), and (C.12) yield the following mass terms for the gravitino in four dimensions

S̃mass =

∫

M11

√−g [L1 + L2 + L3] =

∫

M4

√−g
[
Sαβψ̄α

+µγµνψβ
−ν + c.c.

]
, (C.13)

where

S11 = − ie
3

2
φ̂

8V 3

2

{∫

M7

[
dΩ− ∧ Ω− + dV ∧ V ∧ J ∧ J + 2dJ ∧ Ω− ∧ V

−2G ∧
(
ĉ3 + i

(
Ω− − J ∧ V

))
− dĉ3 ∧ ĉ3

−2idĉ3 ∧
(
Ω− − J ∧ V

)]
− 2λ

}
,

S22 = − ie
3

2
φ̂

8V 3

2

{∫

M7

[
dΩ− ∧ Ω− + dV ∧ V ∧ J ∧ J − 2dJ ∧ Ω− ∧ V

−2G ∧
(
ĉ3 + i

(
−Ω− − J ∧ V

))
− dĉ3 ∧ ĉ3

−2idĉ3 ∧
(
−Ω− − J ∧ V

)]
− 2λ

}
,

S12 = S21 = − ie
3

2
φ̂

8V 3

2

∫

M7

[
2dJ ∧ Ω+ ∧ V − 2ieφ̂G ∧ Ω+ − 2ieφ̂dĉ3 ∧ Ω+

]
. (C.14)

This action can be written in the form (3.36) using (3.37).

D. Coset manifolds

In this appendix we wish to briefly describe the procedure through which we can derive

explicit information on the coset such as the metric, the G structure forms and the basis

forms and their differential relations.

Consider a compact group G with some subgroup H then we can decompose the Lie

algebra as g = H ⊕ K. So the Lie manifold Mg is a fibration of the Lie manifold MH

over the base MK . The base manifold MK is the coset manifold G
H . We now follow the

discussion in [56] and construct a set of Lie valued one-forms from elements on the fibre
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Ly at a point y on the coset manifold, which we then expand in terms of the generators of

the groups H and K

Θ ≡ L−1
y dLy ≡ σaHa + eiKi , (D.1)

where the indices run over the number of generators of the subgroup. The forms ei will

form the basis forms on the coset manifold and using

dΘ = dL−1 ∧ dL = −L−1dL ∧ L−1dL = −Θ ∧ Θ , (D.2)

gives that the basis forms satisfy the differential relations

dσa = − 1

2
fa

bcσ
b ∧ σc − 1

2
fa

ije
i ∧ ej ,

dei = − 1

2
f i

jke
j ∧ ek − f i

ajσ
a ∧ ej ,

(D.3)

where f are the structure constants of the group G. These expressions allow us to calculate

the differential relations on the coset. The useful property of the coset is that requiring

G-invariance

gLy = Ly′h , (D.4)

where g ∈ G and h ∈ H, we recover the transformation rules for a basis form on the coset

ei(y′)Ki = ei(y)hKih
−1 , (D.5)

which means that requiring homogeneity of the basis forms general n-tensor on the coset

g = gi1...inei1 ⊗ · · · ⊗ ein , (D.6)

should satisfy the relation

f j
ai1

gji2...in + · · · + f j
ain

gi1...j = 0 , ∀a , (D.7)

and should have constant co-efficients gi1...in . This is the expression that restricts the

possible forms that respect the coset symmetries which we can use to solve for the most

general one-, two-, or three-forms on the coset and also the metric. Having quickly de-

rived the relevant expressions (D.3) and (D.7) we can move on to consider the particu-

lar examples used in this paper. One immediate conclusion we can draw is that scalar

functions must be constant. This is the general result that cosets can not support warp-

ing.

D.1 SO(5)/SO(3)A+B

The group SO(5) has two commuting SO(3) subgroups. Hence there are a number of ways

to mod out the SO(3) and the index A + B refers to the case where the subgroup H is

taken to be a linear combination of the two SO(3)s. Then by calculating the structure

constants and imposing (D.7) we find that the most general symmetric two tensor on the

coset, which we interpret as the metric, must take the form

g = a(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) + be4 ⊗ e4 + c(e5 ⊗ e5 + e6 ⊗ e6 + e7 ⊗ e7)
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+2d(e(1 ⊗ e5) + e(2 ⊗ e6) + e(3 ⊗ e7)) , (D.8)

where all the parameters are real. Similarly, the most general one-, two-, and three-forms

are

Ψ1 = ζ1e
4 ,

Ψ2 = ζ2

(
e15 + e26 + e37

)
, (D.9)

Ψ3 = ζ3e
123 + ζ4

(
e127 − e136 + e235

)
+ ζ5

(
e145 + e246 + e347

)

+ζ7e
567 + ζ6

(
e167 − e257 + e356

)
,

where all the parameters can be complex. The structure forms V , J and Ω must fall

within the restrictions of (D.9) and they can be uniquely determined by imposing the

algebraic SU(3) structure relations on the forms in (2.6). This leads to equations relating

the complex parameters to the real metric moduli, if we identify Ψ1 with V , Ψ2 with J ,

Ψ3 with Ω.

ζ1 =
√

b ,

ζ2 =
(
ac − d2

) 1

2 ,

ζ3 =
ζ6

a2

(
d + i

(
ac − d2

) 1

2

)2

,

ζ4 =
ζ6a(

d + i (ac − d2)
1

2

) , (D.10)

ζ5 = 0 ,

ζ6 =
2
(
ac − d2

) 1

2 a
√

c

a + ic
,

ζ7 =
ζ6c(

d − i (ac − d2)
1

2

) .

Equations (D.10) give the form of V , J and Ω and we see that the natural basis of forms

on the manifold is

z ≡ e4 ,

ω ≡
(
e15 + e26 + e37

)
, (D.11)

α0 ≡ e123 β0 ≡ e567 ,

α1 ≡
(
e127 − e136 + e235

)
β1 ≡

(
e167 − e257 + e356

)
,

in terms of which we can write the forms as given in equation (4.20). The differential

relations on the coset basis forms can be calculated using (D.3) and are given by

dσ1 = −σ23 − e23 − e67 ,

dσ2 = σ13 + e13 + e57 ,

dσ3 = −σ12 − e12 − e56 ,
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de1 = −σ2e3 + σ3e2 + e45 ,

de2 = σ1e3 − σ3e1 + e46 , (D.12)

de3 = −σ1e2 + σ2e1 + e47 ,

de4 = −e15 − e26 − e37 ,

de5 = −σ2e7 + σ3e6 + e14 ,

de6 = σ1e7 − σ3e5 + e24 ,

de7 = −σ1e6 + σ2e5 + e34 ,

From these expressions it is easy to calculate the basis form differential relations (4.21).

D.2 SU(3) × U(1)/U(1) × U(1)

This coset was first studied in [54]. In this case we have G = SU(3) × U(1). Now U(1) ×
U(1) ⊂ SU(3) so once we modded out by the U(1)×U(1) we will be left with a single U(1)

that is in general a linear combination of the three U(1)s in G which we parameterise by

three integers p,q and r 8. We can repeat the analysis in the previous section and we find

g = a(e1 ⊗ e1 + e2 ⊗ e2) + b(e3 ⊗ e3 + e4 ⊗ e4) + c(e5 ⊗ e5 + e6 ⊗ e6) + de7 ⊗ e7 ,

Ψ1 = ζ1e
7 ,

Ψ2 = ζ2e
12 + ζ3e

34 + ζ4e
56 , (D.13)

Ψ3 = ζ5

(
e135 + e146 − e236 + e245

)
+ ζ6

(
e136 − e145 + e235 + e246

)
,

Imposing the SU(3) relations we arrive at equation (5.13) where the basis forms explicitely

read

z ≡ e7 ,

ω1 ≡ −e12 ω2 ≡ e34 ω3 = −e56 , (D.14)

ω̃1 ≡ −e3456 ω̃2 ≡ e1256 ω̃3 = −e1234 ,

α0 ≡
(
−e136 + e145 − e235 − e246

)
β0 ≡ −1

4

(
e135 + e146 − e236 + e245

)
,

The differential relations on these basis forms are derived from

de1 = αe72 − 1

2
e36 +

1

2
e45 ,

de2 = αe17 − 1

2
e35 − 1

2
e46 ,

de3 = βe74 +
1

2
e25 +

1

2
e16 ,

de4 = βe37 − 1

2
e15 +

1

2
e26 , (D.15)

de5 = −γe67 +
1

2
e14 − 1

2
e24 ,

8The case where p = q = 0 is the trivial fibration case where the coset becomes [SU(3)/U(1) × U(1)] ×

U(1). In that case this is the same as compactifying type IIA supergravity on the manifold SU(3)/U(1) ×

U(1).
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de6 = γe57 − 1

2
e13 − 1

2
e24 ,

de7 = −αe12 − βe34 − γe56 .

These then give the differential relations (5.14) where we have defined the structure con-

stants

α ≡ f7
12 =

q√
3p2 + q2

,

β ≡ f7
34 =

3p + q

2
√

3p2 + q2
, (D.16)

γ ≡ f7
56 =

3p − q

2
√

3p2 + q2
.

References

[1] I.C.G. Campbell and P.C. West, N = 2 D = 10 nonchiral supergravity and its spontaneous

compactification, Nucl. Phys. B 243 (1984) 112.

[2] M. Huq and M.A. Namazie, Kaluza-Klein supergravity in ten-dimensions, Class. and Quant.

Grav. 2 (1985) 293.

[3] F. Giani and M. Pernici, N = 2 supergravity in ten-dimensions, Phys. Rev. D 30 (1984) 325.

[4] A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, The universe as a domain wall, Phys.

Rev. D 59 (1999) 086001 [hep-th/9803235].

[5] G. Papadopoulos and P.K. Townsend, Compactification of D = 11 supergravity on spaces of

exceptional holonomy, Phys. Lett. B 357 (1995) 300 [hep-th/9506150].

[6] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423

(2006) 91 [hep-th/0509003].

[7] B.S. Acharya, A moduli fixing mechanism in M-theory, hep-th/0212294.

[8] B. de Carlos, A. Lukas and S. Morris, Non-perturbative vacua for M-theory on G2 manifolds,

JHEP 12 (2004) 018 [hep-th/0409255].

[9] N. Lambert, Flux and Freund-Rubin superpotentials in M-theory, Phys. Rev. D 71 (2005)

126001 [hep-th/0502200].

[10] J.P. Gauntlett, D. Martelli, S. Pakis and D. Waldram, G-structures and wrapped NS5-branes,

Commun. Math. Phys. 247 (2004) 421 [hep-th/0205050].

[11] J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev.

D 69 (2004) 086002 [hep-th/0302158].

[12] T. House and A. Micu, M-theory compactifications on manifolds with G2 structure, Class.

and Quant. Grav. 22 (2005) 1709 [hep-th/0412006].

[13] G. Dall’Agata and N. Prezas, Scherk-schwarz reduction of M-theory on G2-manifolds with

fluxes, JHEP 10 (2005) 103 [hep-th/0509052].

[14] R. D’Auria, S. Ferrara and M. Trigiante, Supersymmetric completion of M-theory 4D-gauge

algebra from twisted tori and fluxes, JHEP 01 (2006) 081 [hep-th/0511158].

– 38 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB243%2C112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C2%2C293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C2%2C293
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD30%2C325
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C086001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C086001
http://xxx.lanl.gov/abs/hep-th/9803235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB357%2C300
http://xxx.lanl.gov/abs/hep-th/9506150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C423%2C91
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C423%2C91
http://xxx.lanl.gov/abs/hep-th/0509003
http://xxx.lanl.gov/abs/hep-th/0212294
http://jhep.sissa.it/stdsearch?paper=12%282004%29018
http://xxx.lanl.gov/abs/hep-th/0409255
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C126001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD71%2C126001
http://xxx.lanl.gov/abs/hep-th/0502200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CMPHA%2C247%2C421
http://xxx.lanl.gov/abs/hep-th/0205050
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C086002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C086002
http://xxx.lanl.gov/abs/hep-th/0302158
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C1709
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C22%2C1709
http://xxx.lanl.gov/abs/hep-th/0412006
http://jhep.sissa.it/stdsearch?paper=10%282005%29103
http://xxx.lanl.gov/abs/hep-th/0509052
http://jhep.sissa.it/stdsearch?paper=01%282006%29081
http://xxx.lanl.gov/abs/hep-th/0511158


J
H
E
P
0
5
(
2
0
0
6
)
0
4
8

[15] P. Kaste, R. Minasian and A. Tomasiello, Supersymmetric M-theory compactifications with

fluxes on seven-manifolds and G-structures, JHEP 07 (2003) 004 [hep-th/0303127].

[16] G. Dall’Agata and N. Prezas, N = 1 geometries for M-theory and type-IIA strings with

fluxes, Phys. Rev. D 69 (2004) 066004 [hep-th/0311146].

[17] K. Behrndt and C. Jeschek, Superpotentials from flux compactifications of M-theory, Class.

and Quant. Grav. 21 (2004) S1533 [hep-th/0401019].

[18] A. Lukas and P.M. Saffin, M-theory compactification, fluxes and AdS4, Phys. Rev. D 71

(2005) 046005 [hep-th/0403235].

[19] K. Behrndt and C. Jeschek, Fluxes in M-theory on 7-manifolds: G2, SU(3) and SU(2)

structures, hep-th/0406138.

[20] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS backgrounds in

string and M-theory, hep-th/0411194.

[21] A. Franzen, P. Kaura, A. Misra and R. Ray, Uplifting the Iwasawa, Fortschr. Phys. 54 (2006)

207 [hep-th/0506224].
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